Eternal domination: criticality and reachability
نویسندگان
چکیده
We show that for every minimum eternal dominating set, D, of a graph G and every vertex v ∈ D, there is a sequence of attacks at the vertices of G which can be defended in such a way that an eternal dominating set not containing v is reached. The study of the stronger assertion that such a set can be reached after a single attack is defended leads to the study of graphs which are critical in the sense that deleting any vertex reduces the eternal domination number. Examples of these graphs and tight bounds on connectivity, edgeconnectivity and diameter are given. It is also shown that there exist graphs in which deletion of any edge increases the eternal domination number, and graphs in which addition of any edge decreases the eternal
منابع مشابه
Domination, eternal domination and clique covering
Eternal and m-eternal domination are concerned with using mobile guards to protect a graph against infinite sequences of attacks at vertices. Eternal domination allows one guard to move per attack, whereas more than one guard may move per attack in the m-eternal domination model. Inequality chains consisting of the domination, eternal domination, m-eternal domination, independence, and clique c...
متن کاملEternal domination on 3 × n grid graphs
In the eternal dominating set problem, guards form a dominating set on a graph and at each step, a vertex is attacked. After each attack, if the guards can “move” to form a dominating set that contains the attacked vertex, then the guards have successfully defended against the attack. We wish to determine the minimum number of guards required to successfully defend against any possible sequence...
متن کاملDomination in Circulant Graphs
A graph G with no isolated vertex is total domination vertex critical if for any vertex v of G that is not adjacent to a vertex of degree one, the total domination number of G− v is less than the total domination number of G. We call these graphs γt-critical. In this paper, we determine the domination and the total domination number in the Circulant graphs Cn〈1, 3〉, and then study γ-criticality...
متن کاملDomination Criticality
For many graphs parameters, criticality is a fundamental issue. For domination number, Brigham, Chinn, and Dutton began the study of graphs where the domination number decreases on the removal of any vertex. Brigham, Haynes, Henning, and Rall defined the term (γ, k)-critical and proved results for graphs that are (γ, 2)-critical or bicritical. A graph G is said to be (γ, k)-critical if γ(G − S)...
متن کاملDynamic Dominating Sets: the Eviction Model for Eternal Domination
We consider a discrete-time dynamic problem in graphs in which the goal is to maintain a dominating set over an infinite sequence of time steps. At each time step, a specified vertex in the current dominating set must be replaced by a neighbor. In one version of the problem, the only change to the current dominating set is replacement of the specified vertex. In another version of the problem, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discussiones Mathematicae Graph Theory
دوره 37 شماره
صفحات -
تاریخ انتشار 2017